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The in-plane and out-of-plane modes of free vibration of a tapered Timoshenko
beam mounted on the periphery of a rotating rigid hub are investigated. The finite
element method is used to discretize the beam. This formulation permits unequal
breadth and depth taper ratios as well as unequal element lengths. The effects of
shear deformation, rotary inertia, hub radius, setting angle, and spinning rotation
are considered. The generalized eigenvalue problem is defined using explicit
expressions for the mass and stiffness matrices and numerical solutions are
generated for a wide range of parameter variations. Explicit expressions of
Southwell coefficients are presented for the first time for the case of rotating
uniform and tapered Timoshenko beams. Comparisons are made wherever
possible with exact solutions and other numerical results available in the literature.
Extended results are obtained to serve as a benchmark solution for other
numerical techniques and specialized applications.
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1. INTRODUCTION

The dynamic characteristics (natural frequencies and associated mode shapes) of
rotating tapered beams is of great importance to the design and performance
evaluation in a variety of engineering applications, including helicopter blading,
robot manipulators and spinning space structures, and has been the subject of
interest to many investigators.

Compared to rotating uniform and tapered Euler–Bernoulli beams [1–11], the
problem of rotating tapered Timoshenko beams has received less attention inspite
of its importance to many engineering systems. Moreover, solutions reported in
the current literature are less than adequate when compared to the simpler case
of the rotating uniform Euler–Bernoulli beams. Because of the complexity of the
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problem, an exact solution is impossible and many approximate mathematical
models have been developed to investigate the dynamic behavior of such rotating
beams. Some studies have tackled the problem of rotating uniform Timoshenko
beams [12–15]. Recently, Bazoune and Khulief [16] developed a finite beam
element for vibration analysis of a rotating doubly tapered Timoshenko beam in
which explicit expressions for the finite element mass and stiffness matrices were
derived using the consistent mass approach. Later, Khulief and Bazoune [17]
extended the work in reference [16] to account for different combinations of the
fixed, hinged and free end conditions. The simulation results presented in
references [16] and [17] are only for the out-of-plane vibration of rotating tapered
Timoshenko beams where the effect of hub radius and setting angle were not
considered. Mulmule et al. [18] presented a formulation similar to the one
presented in reference [14] but for a tapered beam. However, no explicit
expressions for the element matrices were given in reference [18]. In addition to
the comment made by Naguleswaran [19] on the results reported in reference [18],
few simulation results were presented graphically for the case of a rotating tapered
Timoshenko beam. Hsieh and Abel [20] presented a very general formulation for
rotating bladed disk assemblies where no specific expressions of the elemental
matrices were given. Only the first two frequencies of rotating tapered Timoshenko
beam were presented.

The survey of the current literature reveals a shortage of solution results
pertinent to rotating tapered Timoshenko beams. In this paper, the work of
reference [16] is extended to include the effect of hub radius and in-plane vibration.
Explicit expressions of Southwell coefficients are presented for the first time for
the case of rotating uniform and tapered Timoshenko beams. Extended results are
presented here for the first time to serve as a benchmark solution for other
numerical techniques and specialized applications. The solutions obtained include
numerous combinations over a wide range of parameter variations.

2. THE FINITE ELEMENT MODEL

Figure 1 shows a typical rotating tapered cantilever beam model in the deformed
state. In this figure, the (XYZ) axes represent a global orthogonal co-ordinate
system with origin at the center of mass of the hub such that the Z-axis
corresponds to the spin axis which rotates with a constant angular speed V. The
(X'Y'Z') system is defined as a system of local co-ordinates parallel to the global
(XYZ) co-ordinate system and rigidly attached to the root of the beam with its
origin shifted by R0 from the global (XYZ) co-ordinate system. The co-ordinate
system (xyz) represents a body co-ordinate system that is rigidly attached to the
root of the beam and is obtained by rotating the (X'Y'Z') co-ordinate system
about the X'-axis by an angle c called the setting angle. The X, X' and x-axes
being collinear and coincident with the undeformed beam centerline while the y-
and z-axes lie along the principal axes of the cross-sectional area of the beam. The
beam undergoes flexural vibration in a plane fixed in a local system and rotating
with the beam. For c=90°, the vibration is in the plane of rotation and for
c=0°, the vibration is out of the plane of rotation. It is assumed that: (1) the
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Figure 1. The rotating tapered beam configuration at deformed state.

material of the beam is elastic, homogeneous and isotropic, (2) the linear theory
of elasticity is applied, (3) the hub is rigid, (4) the plane cross-sections initially
perpendicular to the neutral axis of the beam remain plane but no longer
perpendicular to the neutral axis after deformation, and (5) the shear center of the
beam cross-section coincides with its centroid, the cross-section being doubly
symmetric.

The finite element method is used to discretize the elastic beam. The beam
configuration can be defined by a properly generated mesh of finite beam elements.
In this formulation, beam elements are linearly tapered in two planes. Any
combination of taper ratios in the two planes is permitted.

2.1.   

According to Timoshenko beam theory, the total deflection wi(xi, t) of the ith
beam element at a point xi consists of two parts, one caused by bending
deformation wi

b (xi, t) and one by shear deformation wi
s (xi, t), so the total deflection

can be expressed as

wi(xi, t)=wi
b (xi, t)+wi

s (xi, t), (1)

The slope of the deflection curve at point xi can be written as

1wi(xi, t)
1xi =

1wi
b (xi, t)
1xi +

1wi
s (xi, t)
1xi

= ui(xi, t)+ gi(xi, t), (2)

where the angles ui and gi are due to bending deformation and shear deformation,
respectively. Taking the effect of shear deformation into account, the transverse
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displacement wi, and the bending rotation ui at an arbitrary point pi on element
(i) with respect to the element axes can be expressed as

wi(xi, t)= [Ni
w (xi)]{qi(t)} and ui(xi, t)= [Ni

u (xi)]{qi(t)}, (3)

where wi(xi, t) and ui(xi, t) represent the elastic deformations of the beam element,
[Ni

w (wi)] and [Ni
u (xi)] are the matrices of shape functions that are used to model

the deformations of the beam element. In this formulation, a two-node element
is adopted. If the nodal variables are the transverse displacement wi, and the
bending rotation ui, then the nodal co-ordinate vector {qi} defined as

{qi(t)}=[wi
1, ui

1, wi
2, ui

2]T. (4)

Equation (3) is a general equation and is valid for any type of shape functions
[Ni] used to model the beam element. However, the shape functions adopted in
this work are the usual Hermitian polynomials and incorporate in addition to the
continuity and completeness conditions a shear deformation parameter that
accounts for Timoshenko beams. The explicit expressions of the entries of the
matrices [Ni

w ] and [Ni
u ] are given in reference [14].

2.2.   

Following the notation of reference [16], the strain energy expression of the ith
non-spinning tapered Timoshenko beam element of length li is given by

Ui
e = 1

2{qi}T[Ki
e ]{qi}+ 1

2{qi}T[Ki
s ]{qi}, (5)

where [Ki
e ], and [Ki

s ] are the elemental bending stiffness matrix, and the elemental
shear stiffness matrix, respectively. The explicit expressions of the entries of these
respective elemental matrices [Ki

e ], and [Ki
s ] are given in reference [16].

The strain energy expression for the ith spinning tapered Timoshenko beam
element of length l i due to axial stresses resulting from the centrifugal force field
can be given by

Ui
c = 1

2{qi}T[Ki
c ]{qi}, (6)

where [Ki
c ] is the elemental centrifugal stiffness matrix given by

[Ki
c ]=g

li

0

[Bi
c ]TF i

p (xi)[Bi
c ] dxi, (7)

where

[Bi
c ]=

1

1xi [N
i
w ] (8)

and F i
p (xi) is the centrifugal force acting on the beam as a consequence of the

spinning rotation of the hub. Here the assumption has been made that the
displacements are sufficiently small such that the higher order terms of the change
in the axial direction (x-axis) of an element can be neglected. The expression of
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the tensile force F i
p (xi) acting on a section of the beam and associated with a

differential element at point pi of the ith finite beam element is

dF i
p (xi)= riAi(xi)V2(R0 + ri

p ) dri
p , (9)

where for small deformations, one can write

ri
p =(Li + xi)= ((i−1)li + xi). (10)

The tensile force acting on a section at point pi due to the centrifugal effect, can
be calculated by integrating equation (9) over the span between point pi and the
free end of the beam as shown in Figure 2. The resulting tensile force is then
determined, and may be expressed as

F i
p (xi)=

riA0V
2

L0yL0z
[−b4xi4 − b3xi3 − b2xi2 − b1xi + b0]=V2F i

p (xi), (11)

Figure 2. A beam element linearly tapered in two planes.
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where

b0 = 1
4(n

4 − i4 + 4
3i−

1
3)l

i4 + 1
3(−(2n3 −2i3 +3i−1)m2 +R0(n3 − i3 +1))li3

+ (1
2(n

2 − i2 +2i−1)m1 −R0(n2 − i2 +1)m2)l i2 +R0(n− i+1)m1li, (12)

b1 = m1(R0 +Li), b2 = 1
2(m1 −2m2(R0 +Li)), (13, 14)

b3 = 1
3((R0 +Li)−2m2), b4 = 1

4, (15, 16)

where R0 is the hub radius and Li is the inboard length of the beam element under
consideration. If the hub radius R0 is neglected, the expressions of F i

p (xi) and bi

are rendered identical to those obtained in reference [16]. Now, equation (7) can
be written as

[Ki
c ]=V2[Ki

c ], (17)

where

[Ki
c ]=g

li

0

[Bi
c ]TF i

p (xi)[Bi
c ] dxi. (18)

T 1

Centrifugal stiffness matrix of tapered Timoshenko beam element

[Ki
c ]=

riA0

(1+F)2L0yL0z
[Kc)

ab ], ab=1, . . . , 4

The non-zero entries of the lower triangular part of [K(c)
ab ] are as follows:

K(c)
11 =−K(c)

31 =K(c)
33 = 1

5(5F2 +10F+6)b0li
−1 − 1

10(5F2 +10F+6)b1

− 1
105(35F2 +63F+36)b2li − 1

140 (35F2 +56F+30)b3li
2

− 1
35(7F2 +10F+5)b4li

3,

K(c)
21 =−K(c)

32 =− 1
10b0 + 1

60(5F2 +8F+6)b1li + 1
420(35F2 +49F+30)b2li

2

+ 1
280(21F2 +26F+14)b3li

3 + 1
420(28F2 +31F+15)b4li

4,

K(c)
22 = 1

60(5F2 +10F+8)b0li − 1
120(5F2 +6F+4)b1li

2 − 1
210(7F2 +7F+4)b2li

3

− 1
1680(49F2 +44F+22)b3li

4 − 1
420(11F2 +9F+4)b4li

5,

K(c)
41 =−K(c)

43 =− 1
10b0 − 1

60(5F2 +8F)b1li − 1
420(35F2 +63F+12)b2li

2

− 1
280(21F2 +40F+10)b3li

3 − 1
420(28F2 +55F+15)b4li

4,

K(c)
42 =− 1

60(5F2 +10F+2)b0li + 1
120(5F2 +10F+2)b1li

2 + 1
210(7F2 +14F+3)b2li

3

+ 1
1680(49F2 +98F+22)b3li

4 + 1
420(11F2 +22F+5)b4li

5,

K(c)
44 = 1

60(5F2 +10F+8)b0li − 1
120(5F2 +14F+12)b1li

2 − 1
210(7F2 +21F+18)b2li

3

− 1
1680(49F2 +152F+130)b3li

4 − 1
420(11F2 +35F+30)b4li

5,
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Incorporating expression (11) into the integral of equation (7) and carrying out
the integration of equation (7), the explicit expression of the centrifugal stiffness
matrix [Ki

c ] for the ith spinning tapered Timoshenko beam element of length l i due
to centrifugal forces are given in Table 1.

The composite elemental stiffness matrix of the ith beam element can be written
as

[Ki]= [Ki
e ]+ [Ki

s ]+V2[Ki
c ] (19)

or

[Ki]= [Ki
e,s ]+V2[Ki

c ], (20)

where

[Ki
e,s ]= [Ki

e ]+ [Ki
s ]. (21)

2.3.   

The kinetic energy contribution due to translational and rotational deformation
of the ith element of length l i is given by

T i = 1
2{q̇i}T[Mi

t ]{q̇i}+ 1
2{q̇i}T[Mi

r ]{q̇i}, (22)

where

[Mi
t ]=g

li

0

[Ni
w ]TriAi(xi)[Ni

w ] dxi, (23)

T 2

The fundamental frequency parameter lE of a uniform rotating cantilever
Euler–Bernoulli beam with c=0°

lE1 lE2 lE3

ZXXXCXXXV ZXXXCXXXV ZXXXXCXXXXV
h/R 0·0 1·0 0·0 1·0 0·0 1·0

0·0 3·51602 3·51602 22·0348 22·0348 61·7049 61·7049
3·5160† 3·5160† 22·0345† 22·0345† 61·697214‡ 61·697214‡

2·0 4·13733 4·83371 22·6153 23·3664 62·2808 63·0751
4·1373† 4·6337† 22·6149† 23·3660† 62·273184‡ 63·067548‡

4·0 5·58503 7·47511 24·2737 26·9577 63·9742 66·9941
5·5850† 7·4751† 24·2734† 26·9773† 63·966676‡ 66·986772‡

6·0 7·36043 10·4440 26·8095 32·0280 66·6912 72·9939
7·3604† 10·4439† 26·8091† 32·0272† 66·683914‡ 72·986335‡

8·0 9·25694 13·5077 29·9959 37·9552 70·3002 80·5382
9·2568† 13·5074† 29·9954† 37·9538† 70·292962‡ 80·529532‡

10·0 11·2025 16·6070 33·6411 44·3707 74·5670 89·1673
11·2023† 16·6064† 33·6404† 44·3682† 74·649295‡ 89·156329‡

† Reference [9]; ‡ reference [8].
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[Mi
r ]=g

li

0

[Ni
u ]TriIi

yy (xi)[Ni
u ] dxi, (24)

where [Mi
t ], and [Mi

r ] are the elemental mass matrix due to translational
deformation, and the elemental rotary inertia mass matrix due to rotation,
respectively. The explicit expressions of the entries of these respective elemental
matrices are given in reference [16]. The composite elemental mass matrix of the
ith beam element can also be obtained by summing up the contribution of each
mass matrix, namely,

[Mi]= [Mi
t ]+ [Mi

r ], (25)

where [Mi ] is the elemental composite mass matrix, and is known as the consistent
mass matrix because it is formulated using the same shape functions [Ni

w ] and [Ni
u ]

that are used to formulate the stiffness matrix.

2.4.   

The potential energy Vi per unit volume of the beam element due to the
centrifugal force F i

z acting on the beam in the z-direction is given by

Vi =−
1
2 g

li

0

F i
zwiAi(xi) dxi (26)

where

Fi
z = ri(xi)V2wi sin2 c. (27)

Equation (26) can be written in the matrix form as

Vi =−1
2{qi}T(V2[Mi

t ] sin2 c){qi}. (28)

T 3

Effect of setting angle on the first four frequency parameters lT of uniform rotating
cantilever Timoshenko beam with R=3 and h=10

0·1 0·05(rg /L):
ZXXXXCXXXXV ZXXXXCXXXXV

c 0° 90° 0° 90°

lT1 Present work 23·0060 20·8321 23·5220 21·2816
Reference [14] 23·050 20·867 23·524 21·313

lT2 Present work 45·8150 45·0809 56·0951 55·2570
Reference [14] 45·598 45·115 56·105 55·284

lT3 Present work 68·9308 67·3641 97·1537 96·7106
Reference [14] 67·716 67·520 97·188 96·747

lT4 Present work 73·0185 72·7188 144·395 144·115
Reference [14] 74·1677 72·756 144·490 144·208
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Figure 3. Variation of the first three frequency parameters of rotating uniform Timoshenko beam
with (rg /L)=0·08. ——, c=0°; -·-·-·-, c=90°.

3. THE GENERALIZED EIGENVALUE PROBLEM

The sum of the individual element energies over the entire beam may be utilized
to establish the Lagrangian function as

L= s
n

j=1

(Ti −Ui −Vi) (29)

Upon substitution of the expression of L into Lagrange’s equation of free
vibrational motion

d
dt 01L

1q̇i 1−
1L
1qi =0, (30)

one obtains the governing differential equation of motion of the rotating tapered
beam. This may be written as

[M]{q̈}+([Ke,s ]+V2([Kc ]− [Mt ] sin2 c)){q}= {0}, (31)
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where {q} is the vector of all nodal co-ordinates of the beam. The matrices [M],
and [Mt ] are the global mass and, translational mass matrices while [Ke,s ] and [Kc ]
represent global elastic stiffness matrix and centrifugal stiffness matrix,
respectively, of the whole beam obtained by the standard finite element assembly
procedure. It is clear from equation (31) that there are two competing effects
produced by the rotation, a stiffening one, V2[Kc ] and a softening one,
−V2[Mt ] sin2 c. The contribution of the gyroscopic term is assumed to be very
small and hence is neglected in this paper. Assuming the solution of equation (31)
in the form

{q}= {q̄} eivt, (32)

one obtains the generalized eigenvalue problem as

([Ke,s ]+V2([Kc ]− [Mt ] sin2 c)−v2[M]){q̄}= {0}, (33)

where {q̄} is a vector of displacement amplitudes and v is the frequencies of
harmonic vibrations. Solution of the generalized eigenvalue problem associated
with equation (33) gives the natural frequencies and the corresponding mode
shapes of the rotating tapered Timoshenko beam.

Figure 4. Variation of the first three frequency parameters of rotating tapered Timoshenko beam
with (rg /L)=0·08, R=1·0 and c=0°. –·–, ny =0·10, nz =0·25; -----, ny =0·30, nz =0·60; ——,
ny =0·50, nz =0·50, ·····, ny =0·75; nz =0·50.
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Figure 5. Variation of the first three frequency parameters of rotating tapered Timoshenko beam
with (rg /L)=0·08, R=1·0 and c=90°. Key as for Figure 4.

4. RESULTS AND DISCUSSION

The case of a rotating tapered Timoshenko beam including the effects of hub
radius and setting angle has been studied extensively. The results obtained in this
investigation may be applied to tapered and uniform beams with doubly
symmetric cross-sections. Because results for rotating tapered Timoshenko beams
including the effects of hub radius and setting angle could not be found in the
available literature, several special cases were examined to verify and validate the
present scheme.

The case of a uniform Euler–Bernoulli beam has been reproduced here for
various values of spin and hub radius parameters, as shown in Table 2. The present
results were obtained by dividing the rotating beam into 10 finite beam elements
of equal length and include the first three flexural frequency parameters for the
flapping vibration (c=0°). The results presented herein show very good
agreement with other numerical techniques, namely, those presented by Hodges
and Rutkowski [8] and Wright et al. [9].

Because the literature lacks sufficient information to adequately reproduce the
same results based on Timoshenko theory, the following data are used: Poisson’s
ratio=0·3, and shear correction factor=0·85 for rectangular cross-section with
(rg /L)=0·08, this case being the most encountered in the literature. These results
were obtained by using 10 finite Timoshenko beam elements. The numerical results
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show that the effect of shear deformation and rotary inertia is more pronounced
for beams at higher modes rather than at lower modes, as expected. The first four
flapping (c=0°) and lead-lag (c=90°) natural frequencies of vibration of
rotating uniform Timoshenko beams have been reproduced in Table 3. These
results represent a very good agreement when compared to Yokoyama [14].

In order to study the effects of taper ratios, shear deformation, rotary inertia,
hub radius, setting angle and spin parameter on the frequencies of a rotating
tapered Timoshenko beam, a variety of results of simulations are presented in
graphical form, as shown in Figures 3–5. A closer investigation to the fundamental
mode is displayed by Figures 6–8.

In Figure 3, are shown the first three frequency parameters for both out-of-plane
(c=0°) and in-plane (c=90°) vibration of a rotating uniform Timoshenko beam
at different values of the hub radius parameter R and spin parameter h. These
frequency parameters experience an increase with the increase of spin parameter
and hub radius parameter. Furthermore, it is noteworthy to observe that as the
spin parameter h increases, the difference between the out-of-plane and the
in-plane vibration frequency parameters increase. This difference is highest for the
fundamental mode and decreases as the mode number increases.

Figures 4 and 5 show respectively the first three frequency parameters for
out-of-plane and in-plane vibration at different values of taper ratios and spin rate

Figure 6. Variation of the first frequency parameter lT1 of rotating tapered Timoshenko beam
Variation of the first frequency with (rg /L)=0·08, ny = nz =0·1. ——, c=0°; and -·-·-·-, c=90°.
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Figure 7. Southwell coefficient S1 as a function of hub radius R of a uniform beam for two extreme
setting angles. Present solution : –·–, Euler: S1 =1·1456+1·4855 R−sin2 c; ——, Timoshenko:
S1 =1·0484+1·4170 R−sin2 c. Shilhansl: –·R·–, Euler: S1 =1·173+1·5584 R−sin2 c.

while keeping a constant value of the hub radius parameter (R=1). From these
figures it can also be noticed that for tapered Timoshenko beams, all the three
frequency parameters experience an increase as the spin parameter increases. In
addition to that, a cross-over between the frequencies of the beam at different
tapers can be noticed. Moreover, it is interesting to observe the dominance of the
softening effect over the stiffening one which is manifested by Figure 5 and
characterized by a decrease in the fundamental frequency parameter at high spin
parameters for the case of ny =0·75 and nz =0·5. Such a decrease shows that the
term −V2[Mt ] sin2 c dominates the centrifugal effect, thus resulting in a net
softening effect at c=90° and higher values of h. Furthermore, the previous
figures show that the out-of-plane frequency parameters are always greater than
those of the corresponding in-plane frequency; this was shown to be the case for
a uniform Euler–Bernoulli beam (see reference [22] for proof) and the present
results suggest that this conclusion can be extended to the uniform and tapered
Timoshenko beam.

The fundamental frequency parameter of flexural vibration is examined at a
wide range of spin parameter and hub radius parameter for two extreme setting
angles c=0° and c=90° as shown in Figure 6. For higher spin parameters, the
frequency dependence on R depends strongly on the setting angle c; thus for
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c=0°, the fundamental frequency is still near linear with hub radius parameter
R, but for c=90°, not only is the relationship no longer linear, but also shows
much greater sensitivity to changes in hub radius; this is due to the relative
contributions of both stiffening and softening effect, the former depending on R,
the latter on c. On the other hand, it is of interest to notice again the dominance
of the softening effect over the stiffening effect for the case of R=0 and h=10.
Moreover, one can also observe that for a fixed h, the difference between the
flapping and lead-lag frequency decreases as the hub radius increases. The larger
the spin is, the greater the difference among the frequencies is manifested as shown
in Figure 6.

It is of interest to investigate whether the flexural frequencies of rotating
cantilever tapered Timoshenko beams would fit into some form of Southwell linear
approximation. The flexural frequency parameter li of a rotating beam is usually
expressed as a function of the corresponding frequency parameter at standstill l0,
and the spin parameter hi , in the form l2

i = l2
0 +Sih

2
i , where the subscript i refers

to the ith mode and Si is called Southwell coefficient. It is worthwhile trying to
fit the results of simulation into Southwell form and obtain Southwell coefficients
for several parameter changes. Results presented in this form are more economical

Figure 8. Southwell coefficient S1 as a function of hub radius R for a tapered Timoshenko beam,
(rg /L)=0·08 and c=0°. –·q–·, ny =0·1, nz =0·0, S1 =1·01468+1·37639 R; –R–, ny =0·0,
nz =0·1, S1 =1·01761+1·38132 R; ····q···, ny =0·4, nz =0·3, S1 =0·75948+1·06279 R; –E–·,
ny =0·5; nz =0·5, S1 =0·59444+0·84169 R; --w---, ny =0·6; nz =0·8, S1 =0·37693+0·52446 R.
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and useful from practical point view than a long table of frequency parameters
at various values of parameter changes. Schilhansl [2] presented an explicit
expression of S1 corresponding to the fundamental mode of a rotating uniform
Euler–Bernoulli beam. Dokainish and Rawtani [21] presented a table of values of
Si up to third mode of vibration of rotating cantilever plates.

In this analysis an attempt has been made for the first time to obtain Southwell
coefficients for the fundamental mode of rotating uniform and tapered
Timoshenko beams. Figure 7 shows the Southwell coefficient S1 as a function of
hub radius parameter R and setting angle c. Explicit expressions of S1 for rotating
uniform Euler–Bernoulli and Timoshenko beams are also presented in this figure.
It is of interest to observe that S1 corresponding to the flapping motion (c=0°)
is parallel to the one of lead-lag motion (c=90°) and the difference between them
is unity. A similar trend can be observed for the case of the Timoshenko beam.
The expression S1 corresponding to the rotating uniform Euler–Bernoulli beam is
in excellent agreement when compared to the one proposed by Schilhansl [2].

Figure 8 displays the Southwell coefficient S1 for rotating tapered Timoshenko
beams. The corresponding explicit expressions of S1 of the flapping motion of
rotating tapered Timoshenko beams have been provided at a wide range of taper
ratios. Lead-lag expressions of S1 of rotating tapered Timoshenko beams can be
obtained from the flapping case by considering the results obtained from Figure 7
and explained in the previous paragraph.

5. CONCLUSION

The modal characteristics of the free vibration of a tapered Timoshenko beam
mounted on the periphery of a rotating rigid hub, at a setting angle with the plane
of rotation, have been investigated. The finite element method is used to discretize
the beam element. This formulation permits unequal breadth and depth taper
ratios as well as unequal element lengths. The effects of shear deformation, rotary
inertia, hub radius, setting angle, and spinning rotation are accounted for. It has
been noticed that the softening effect −V2[Mt ] sin2 c can dominate the stiffening
effect V2[Kc ] under the conditions where (c=90° and R=0) for high spinning
rotation. Southwell coefficients have been reported for the first time up to the best
knowledge of the authors for tapered Timoshenko beams. The results obtained
stand in excellent agreement with the Southwell approximation. It is also shown
that Southwell coefficients depend on setting angle c, hub radius parameter R and
taper ratios ny and nz .
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APPENDIX: NOMENCLATURE

Ai(xi) cross-sectional area of the beam element
A0 cross-sectional area of the root of the beam
[Bi] strain displacement matrix
E modulus of Elasticity
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F i
P (xi) x-component of the centrifugal force

F i
z z-component of the centrifugal force

G modulus of rigidity
I i(xi) second moment of area of the beam
I0 second moment of area at the root of the beam
i refers to the ith element
[Ki] composite elemental stiffness matrix
[Ki

e ] elemental bending stiffness matrix
[Ki

s ] elemental shear stiffness matrix
[Ki

e,s ] = [Ki
e ]+ [Ki

s ] elemental stiffness matrix (due to bending and shear
deformations)

[Ki
c ] elemental centrifugal stiffness matrix

[Ke,s ] = [Ke ]+ [Ks ] global stiffness matrix of the beam
k shear correction factor
L Lagrangian
L truncated length of the beam
Li outboard length of the beam from element under consideration
L0y untruncated length of the beam in the (xy) plane
L0z untruncated length of the beam in the (xz) plane
l i element length
[Mi ] composite elemental mass matrix
[Mi

t ] elemental translational mass matrix
[Mi

r ] elemental rotary inertia mass matrix
[Mt ] translational mass matrix of the beam
[M] global mass matrix of the beam
[Ni

w ], [Ni
u ] matrices of shape funcitons

n total number of elements
pi location of the finite element (i)
{q} vector of nodal co-ordinates
{q̄} vector of displacement amplitudes of vibration
R0 hub radius
R = R0/L, non-dimensional hub radius
rg = zI0/A0, radius of gyration of the cross-section of the beam
Si Southwell coefficients corresponding to ith mode.
t time
T i kinetic energy of the beam element
Ui strain energy of the beam element
V i potential energy of the beam element
w total deflection in (xz) plane
wb deflection due to bending deformation
ws deflection due to shear deformation
xi elemental co-ordinate
xyz local co-ordinate axes
XYZ global co-ordinate axes
ri mass density
bi constants
mi constants
v natural frequency of the beam
V rate of spin of the hub
c setting angle
F shear deformation parameter
gi angle of distorsion due to shear deformation
ui angle of rotation due to bending deformation
l = vL2zrA0/EI0, frequency parameter



.   .174

lE Euler–Bernoulli frequency parameter
lT Timoshenko frequency parameter
h = VL2/zEI0/rA0, spin parameter
ji = xi/li, non-dimensional elemental co-ordinates
ny = L/L0y , taper ratio in (xy) plane
hz = L/L0z , taper ratio in (xz) plane
[ ]T transpose of [ ]
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